Mark Scheme (Results)
Summer 2019

Pearson Edexcel International Advanced Level In Biology (WBIO2) Paper 01
Development, Plants and the Environment

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 1906
Publications Code WBIO2_01_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer	Additional Guidance	Mark
1（a）	sclerenchyma fibres are for support only／xylem vessels are for transport／eq ；	Accept strengthening for support	（1）

Question Number	Answer					Additional Guidance	Mark
1（b）							（4）
	Feature	Sclerenchyma fibres and xylem vessels	Sclerenchyma fibres only	Xylem vessels only	Not found in either sclerenchyma fibres or xylem vessels		
	absence of end walls between adjacent cells	区	区	X	区		
	cell membrane	区	区	区	X		
	lignified cell walls	X	区	区	区		
	pits	X	区	区	区		

Question Number	Answer	Additional Guidance	Mark
2(a)	1. structural / functional / smallest / eq ;	1.ACCEPT examples e.g. contains organelles / cytoplasm /site of metabolic reactions 2.IGNORE building block	(2)

Question Number	Answer	Additional Guidance	Mark
2(b)(i)	1. $\{$ synthesise / eq\} the pepsinogen (in ribosomes); 2. folding protein into \{secondary / tertiary / 3D \} shape ; 3. idea of packaging (for transport to the Golgi apparatus);	2. and 3. ACCEPT protein / polypeptide as eq to pepsinogen	(2)

$\left.\begin{array}{|l|c|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Additional Guidance } & \text { Mark } \\ \hline \text { 2(b)(ii) } & \begin{array}{l}\text { 1. modification of the pepsinogen / eq ; } \\ \text { 2. idea of packaging of the pepsinogen into a vesicle (for exocytosis) / } \\ \text { eq ; }\end{array} & \begin{array}{l}\text { ACCEPT protein / polypeptide as } \\ \text { eq to pepsinogen }\end{array} & \\ \text { of carbohydrate to protein }\end{array}\right]$
$\left.\begin{array}{|l|c|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Additional Guidance } & \text { Mark } \\ \hline \text { 2(c) } & \begin{array}{ll}\text { 1. gastric stem cells can divide indefinitely but chief cells cannot / eq } \\ ;\end{array} & \begin{array}{l}\text { Answers must be comparative, } \\ \text { accept the word "only" as making } \\ \text { a statement comparative } \\ \text { 1. ACCEPT comparative answers } \\ \text { in terms of Hayflick limit }\end{array} \\ \text { 2. idea that gastric stem cells can differentiate into other cell types } \\ \text { but chief cells cannot / eq; }\end{array} \quad \begin{array}{l}\text { 2. NOT answers that imply gastric } \\ \text { stem cells are totipotent } \\ \text { 2. ACCEPT gastric stem cells are } \\ \text { undifferentiated but chief cells are } \\ \text { differentiated } \\ \text { 2.ACCEPT specialised for } \\ \text { differentiated }\end{array}\right\}$

Question Number	Answer	Additional Guidance	Mark
3(a)	$57 / 57.1 / 57.14(\%) ;$		(1)

Question Number	Answer	Additional Guidance	Mark
3(b)	1. cylinders / tubes / hollow rods; 2. at right angles; 3. made of microtubules;	1. NOT tubules	

Question Number	Answer	Additional Guidance	Mark
3(c)(i)	R Q S P;		(1)

Question Number	Answer	Additional Guidance	Mark
3(c)(ii)	1. prokaryotic cells do not have (linear) chromosomes;	ACCEPT 'they' as eq to prokaryotes / prokaryotic cells	
	2. prokaryotic cells do not have a nucleus;	1. ACCEPT (prokaryotic cells) have circular DNA / eq 2. IGNORE nuclear membrane	(2)

Question Number	Answer	Additional Guidance	Mark
3(d)	1. formation of the nuclear \{envelope / membrane\};	IGNORE sequence 2. formation of nucleoli ; 3. formation of \{cell plate / cell wall\} ; 1 and 2. ACCEPT fe-formation	
4. cell division / eq ;	2. ACCEPT singular or plural name 4. IGNORE cytokinesis 4. ACCEPT division of cytoplasm 4. ACCEPT formation of cell membrane	(3)	

Question Number	Answer	Additional Guidance	Mark
3(e)	1. \quad idea that the number of mitochondria (in each cell) will be halved;		
2. \quad so replication of mitochondria needed to restore original number;	3.ACCEPT example of growth or 3etabolism e.g. for duplication of (mitochondria needed) to provide \{energy / ATP\} for (cell) \{growth / metabolism / cycle / mitosis\};	(2)	

Question Number	Answer	Mark
4(a)(i)	The only correct answer is \mathbf{B}	
	\boldsymbol{A} is incorrect because each gene is determining one character	
\boldsymbol{C} is incorrect because one gene is determining several characters		
\boldsymbol{D} is incorrect because it is impossible		

Question Number	Answer	Additional Guidance	Mark
4(a)(ii)	\{line / bar\} graph to show a bell-shaped curve;	ACCEPT a skewed distribution	(1)

Question Number	Answer	Additional Guidance	Mark
4(bi)	1. idea that the leaves will look \{ yellow / white \}; 2. \quad because chlorophyll will not be made ; 3. idea that the plant will \{be small / not be healthy / eq\} ; 4. as photosynthesis will be slow / eq ;	1. ACCEPT correct reference to chlorosis 1. IGNORE "leaves change colour" /"leaves will not be green" 2. ACCEPT magnesium needed to produce chlorophyll 3. e.g. stunted growth / reduced growth	

Question Number	Answer	Additional Guidance	Mark
*4(b)(ii)	1. idea of using wheat plants of the same genotype ; 2. idea that a control group of wheat is grown with all mineral ions ; 3. idea that the test group of wheat is grown with all mineral ions but \{no / reduced\} magnesium ions ; 4. other growth conditions need to be \{optimum / not limiting\} ; 5. credit two named abiotic factors that need to be controlled; 6. credit how one of these abiotic factors is controlled ; 7. idea that the plants are left several days to grow ; 8. credit an indication of how the dependent variable will be measured; 9. idea of growing several wheat plants in each group \{to calculate mean value / for reproducibility / for reliability\};	QWC focus on clarity of expression 1. e.g. same age /height /mass /species /variety 2.IGNORE references to using different concentrations of Mg^{2+} 2. and 3. IGNORE nutrients 5. e.g. temperature / light intensity /pH / water 6. e.g. use of incubator / light source described / use of buffer solution 7. minimum time should be 7days 8 e.g. measure height / mass /number of leaves /extract pigments and measure light absorbance / starch concentration 9.ACCEPT repeat the investigation \{to calculate mean / for reproducibility / for reliability\}	(6)

Question Number	Answer	Additional Guidance	Mark
5(a)	1. the role of \{an organism / a species / sloth\} in its \{habitat /community / environment / ecosystem eq\} ;	1. IGNORE exploit environment	
	2. sloths are \{herbivores / provide food for carnivores / eq\} ;	2.ACCEPT sloths eat leaves	(2)

Question Number	Answer	Additional Guidance	Mark
5(b)	1. 15% of 48 and 53 calculated $=7.2$ and $7.95 ;$	Correct answer with no working shown gains both marks	
	2. Correct lengths $=55.2$ and $60.95(\mathrm{~cm}) ;$	2. ACCEPT 5.75 or $6(\mathrm{~cm})$ as correct answer $2 . A C C E P T ~$ 55	

Question Number	Answer	Additional Guidance	Mark
5(c)(i)	Advantage to the sloth: 1. algae provide camouflage from predators / eq ; Advantage to the algae: 2. idea (algae) are high up (in the trees) to absorb sunlight for photosynthesis / eq; Advantage to the moth: 3. algae provide it with food / eq ;	1. ACCEPT idea algae are a food source for sloths 2. ACCEPT idea they obtain water from sloth fur 3. ACCEPT idea sloth fur provides protection / warm temperature for eggs 3. ACCEPT idea (sloth fur) gives protection / camouflage from predators 3.IGNORE moths eat sloth fur	(3)

Question Number	Answer	Additional Guidance	Mark
5(c)(ii)	1. remove all the organisms from (the fur of) the sloth;	1. IGNORE references to use of quadrats but DO NOT ACCEPT context of pitfall trap	
	2. \{count / identify\} the number of different species;	2.NOT organisms	(2)

| Question
 Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{6 (a)}$ | idea of new species being \{identified / discovered / introduced /
 migrating / eq\}; | DO NOT ACCEPT context of
 speciation / conservation | (1) |

Question Number	Answer	Additional Guidance	Mark
6(b)(i)	1. idea of comparing \{DNA / proteins / RNA \} (of different civets);	1. ACCEPT analysing / observing as eq to comparing 1. IGNORE electrophoresis	
2. idea of relating \{different base sequences / different amino acid sequences \} to different species;	(2)		

Question Number	Answer	Additional Guidance	Mark
(b)(ii)	1. idea of breeding each of the three \{types / species / eq\} of civet with each other ;		
2. idea of mating the young with \{each other / original civets\} ; 3. idea that if no offspring are produced they must be different species;	2. IGNORE "check if offspring are fertile"	3. ACCEPT in context of mp1 or $m p 2$	(2)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{6 (c) (i)}$	$0.01 / 0.011 / 0.0107 ;$	ACCEPT standard form	(1)

Question Number	Answer	Additional Guidance	Mark
6(c)(ii)	1. idea leopards are camouflaged so may not be seen;		
	2. some leopards may not be seen up in the trees;		(2)

Question Number	Answer	Additional Guidance	Mark
7(a)(i)	1. drawing that shows a head, mid piece and flagellum ; 2,3 and 4 any three labelled structures from : head mid piece flagellum mitochondria acrosome (haploid) nucleus ;;;	1.IGNORE labels when assessing this mark 1. Flagellum must be longer than (head + midpiece) 2. 3.and 4.ACCEPT phonetic spellings ACCEPT neck, middle piece IGNORE tail ACCEPT flagella ACCEPT one or several drawn in mid piece ACCEPT mitochondrion structure must be drawn in head IGNORE enzymes must be drawn in head DO NOT ACCEPT diploid	(4)

Question Number	Answer	Additional Guidance	Mark
7(a)(ii)	1. streamlined for ease of movement (through female reproductive tract) / eq ; 2. flagellum for propelling sperm (through the female reproductive tract) / eq ; 3. acrosome containing enzymes that break down the zona pellucida / eq ; 4. mitochondria to provide energy for movement / eq ; 5. nucleus to carry genetic material ;	2. ACCEPT idea flagellum allows it to swim 2. ALLOW transferred error from labelling in 7a(i) 4.ACCEPT mitochondria to produce ATP for movement / eq 5. ACCEPT haploid nucleus to restore diploid number (of chromosomes) after fusion / eq	(3)

Question Number	Answer	Additional Guidance	Mark
7(b)(i)	1. lycopene has \{no significant effect / little effect\} on the number of sperm in the control rats ; 2. lycopene increases the number of sperm in rats exposed to PCBs ; 3. credit correct manipulation of data to quantify mp1 or 2 ;	"lycopene increases the mean number of sperm produced" or "lycopene increases the number of sperm in both groups" can only be awarded one of these marks. $\mathrm{mp1}$ (mean) increase is 30×10^{6} mp 2 (mean) increase is 120×10^{6}	(2)

Question Number	Answer	Additional Guidance	Mark
7(b)(ii)	1. idea of treating all rats with PCBs ; 2. idea that a control group of rats is not fed with fruit; 3. idea of \{feeding / dosing / eq\} (the other) groups of rats with \{different / certain\} types of fruits ; 4. idea of determining the number of sperm produced for each group of rats ;	1. This is a stand alone mark so can be given even if answer does not refer to a control group 1. Piece together if necessary 3.ACCEPT fruit juice IGNORE concentrations ACCEPT named fruits	(3)

Question Number	Answer					Additional Guidance	Mark
8（a）							（3）
	Stage	Number of chromosomes in the cells					
		11	22	44	88		
	gamete	区	X	区	区		
	planula	区	区	X	区		
	ephyra	区	区	X	区		

| Question
 Number | Answer | Additional Guidance | |
| :--- | :--- | :--- | :--- | :--- |
| 8（b） | female | Mark | |
| | female ； | ACCEPT | （1） |

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array} & \text { Answer } & \begin{array}{l}\text { 1. sexual reproduction results in genetic diversity; }\end{array} & \text { Additional Guidance } \\
\hline \text { 8(c) } & \begin{array}{l}\text { 2. idea of sexual reproduction reducing the chances that all } \\
\text { jellyfish would be killed by a change in the environment; } \\
\text { 3. asexual reproduction results in genetically identical jellyfish / } \\
\text { eq; }\end{array} & \begin{array}{l}\text { 2. e.g. disease, change in pH, } \\
\text { change in temperature }\end{array}
$$

3. ACCEPT no genetic variation

3. ACCEPT asexual reproduction is

fast(er)

3. ACCEPT asexual reproduction

does not need a mate\end{array}\right\}\)| 4. ACCEPT idea the population |
| :--- |
| increases quickly with asexual |
| reproduction |
| 4.ACCEPT asexual reproduction |
| maintains a large population |
| 4. ACCEPT isolated individual can |
| reproduce asexually |
| surviving in the (current) environment / eq; |

Question Number	Answer	Additional Guidance	Mark
8(d)(i)	1. the fewer the initial number of polyps the greater (the increase) in population density;	1. ACCEPT negative correlation 1. ACCEPT converse responses	

Question Number	Answer	Additional Guidance	Mark
8(d)(ii)	1. idea of less competition for attachment sites; 2. idea of less competition for food ; polyps	IGNORE less compense answers resources	
	3. fewer polyps attract fewer predators;		(2)

Pearson Education Limited. Registered company number 872828

